Phenological Observations on Classical Prehistoric Sites in the Middle and Lower Reaches of the Yellow River Based on Landsat NDVI Time Series

نویسندگان

  • Yuqing Pan
  • Yueping Nie
  • Chege Watene
  • Jianfeng Zhu
  • Fang Liu
چکیده

Buried archeological features show up as crop marks that are mostly visible using high-resolution image data. Such data are costly and restricted to small regions and time domains. However, a time series of freely available medium resolution imagery can be employed to detect crop growth changes to reveal subtle surface marks in large areas. This paper aims to study the classical Chinese settlements of Taosi and Erlitou over large areas using Landsat NDVI time series crop phenology to determine the optimum periods for detection and monitoring of crop anomalies. Burial areas (such as the palace area and the sacrificial area) were selected as the research area while the surrounding empty fields with a low density of ancient features were used as reference regions. Landsat NDVI covering two years’ growth periods of wheat and maize were computed and analyzed using Pearson’s correlation coefficient and Euclidean distance. Similarities or disparities between the burial areas and their empty areas were computed using the Hausdorff distance. Based on the phenology of crop growth, the time series NDVI images of winter wheat and summer maize were generated to analyze crop anomalies in the archeological sites. Results show that the Hausdorff distance was high during the critical stages of water for both crops and that the images of high Hausdorff distance can provide more obvious subsurface archeological information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of tiller heterogeneity on yield components of rice grown under different nitrogen regimes

Increase in rice yield under excessive nitrogen (N) supply is negligible, hence it is necessaryto analyze the limiting factors via yield components. The present study was carried out during2014 and 2015 growing seasons in order to quantify the yield componenents of different typesof tiller at various N levels. Tillers were divided into three different types (superior, mediumand inferior) based ...

متن کامل

Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data

Temporal-related features are important for improving land cover classification accuracy using remote sensing data. This study investigated the efficacy of phenological features extracted from time series MODIS Normalized Difference Vegetation Index (NDVI) data in improving the land cover classification accuracy of Landsat data. The MODIS NDVI data were first fused with Landsat data via the Spa...

متن کامل

Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data

Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oa...

متن کامل

Physiological processes associated with high yield traits in modern rice varieties

Understanding the physiological processes associated with high yield traits in modern cropvarieties is essential to further increase grain yield and improve nutrient management strategies.Field trials were conducted to study the effects of fertilization and variety on the grain yield ofrice (Oryza sativa L.) with two fertilizer levels and 18 modern varieties. The objectives were toevaluate yiel...

متن کامل

Assessment of a multi-sensor approach for noise removal on Landsat-8 OLI time series using CBERS-4 MUX data to improve crop classification based on phenological features

We investigated a method for noise removal on Landsat-8 OLI timeseries using CBERS-4 MUX data to improve crop classification. An algorithm was built to look to the nearest MUX image for each Landsat image, based on user defined time span. The algorithm checks for cloud contaminated pixels on the Landsat time series using Fmask and replaces them with CBERS-4 MUX to build the integrated time seri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017